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Fraction of barred galaxies in the local 
Universe

Between 30 and 50% of the spiral 
galaxies in the local Universe host 
stellar bars (de Vaucouleurs et al. 1991; 
Barazza et al. 2008 ; Aguerri et al. 
2009 ; Nair & Abraham 2010;  Masters 
et al. 2011; Lee et al. 2012; Cervantes 
Sodi et al. 2013, 2014).

Lee et al. (2012)

SB1 -> strong bars
SB2 -> weak bars



Nair & Abraham 2010 Cervantes Sodi et al. 2013

Dependence of fbar on galactic properties



M101 and NGC1300, similar 
stellar mass and size



Early simulations

*Fixed potential 
for the halo



Efstathiou, Lake & Negroponte (1981)

• Numerical experiments on the 
stability of exponential discs.

• Propose a stability criterion:                                        
which is basically a ratio 
between dynamical and disk 
mass.

• On their simulations, discs with 
ε*  > 1.1 where stable against bar 
formation



Using a live halo

Massive disk

Massive disk

Massive halo

Massive halo

Athanassoula & 
Misiriotis 2002,
Athanassoula 2012



An observational counterpart
(Cervantes sodi, Li & Park 2015)

KIAS galaxy catalog 
(Lee et al. 2012)

Strong bars

Weak bars

~30,000 galaxies
from the SDSS



Stellar-to-halo mass estimate

• Stellar mass estimates from 
VAGC from the MPA/JHU 
SDSS database based on fits to 
the SDSS five-band data 
(Kauffmann et al. 2003; 
Brinchmann et al. 2004)

• Halo mass estimates from Yang 
et al. (2007) group catalog

• Galaxies are grouped according to their common halos (FoF algorithm)
• Halo mass is assigned to each group
• The most massive galaxy is defined as the central one
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3. RESULTS AND DISCUSSION

3.1. Central Galaxies

Given that our interest is to study the dependence of the
likelihood of galaxies hosting bars on their stellar-to-halo mass
ratio, in this subsection we will include only central galaxies
for which we have estimates of their respective halo masses.

Figure 1(a) shows the well known dependence of fbar on
stellar mass (Méndez-Abreu et al. 2010; Nair & Abraham 2010;

Masters et al. 2012; Oh et al. 2012; Cervantes-Sodi et al. 2013)
for the central late-type galaxies in our sample, with an increase
of the bar fraction with increasing stellar mass for the case of
strong bars, while weak bars show the opposite trend, an
increase of fbar for decreasing stellar mass. Figure 1(b) shows
the dependence of fbar on the host halo mass. Similar to the case
of stellar mass, we find that strong bars tend to be more
common in galaxies with massive halos (contrary to the results
of Martínez & Muriel 2011, who found no dependence on halo
mass), while weak bars show almost no dependence of fbar on
halo mass. Given that more massive stellar disks reside in more
massive halos, this dependence of the bar fraction on Mh is not
surprising. A more interesting feature to explore is the
dependence of the bar fraction on the stellar-to-halo mass
fraction. As can be seen in Figure 1(c); for the case of strong
bars, galaxies with high M*/Mh ratios ( 1.8-⩾ ) have much
higher bar fraction than systems that are more dominated by
dark matter. Weak bars present only a weak dependence but in
the opposite direction, with fbar increasing with decreasing
M*/Mh.
It is interesting to check if this dependence is visible at fixed

stellar mass. In the top panels of Figure 2 we present the bar
fraction in the Mh versus M* plane, for the full sample of barred
galaxies (strong plus weak bars, left panel), strong (central
panel) and weak (right panel) bars separately. We use a spline
kernel to get a smooth transition of fbar, dividing the parameter
space into 20 × 20 bins, and requiring at least 15 galaxies per
bin to estimate the bar fraction. The first thing to note is that
even at fixed stellar mass, there is a strong variation of fbar with
halo mass, and the dependence is particularly clear for the case
of strong bars, with fbar increasing with decreasing Mh at fixed
M*, although the dependence is more dramatic fixing the halo
mass and looking at the increase of fbar with increasing stellar
mass. Weak bars are found in galaxies with low M* and Mh
values.
For the cases of the full sample and the restricted subsample

of strong bars, we find that the bar fraction presents a secondary
maximum at high halo mass (M M10h

132 :) and relatively low
stellar mass (M M* 1011.21 :). These systems are actually
central galaxies of rich groups, where the stellar mass refers to
the central galaxy only, but the total halo mass refers to the
mass of the parent halo plus the satellite systems. In this sense,
the value obtained through our estimate for the M*/Mh
represents only a lower value or the real one. Besides, in these
rich groups, other mechanisms might be taking place changing
the likelihood of galaxies hosting bars.
With the most massive galaxies populating the most massive

halos and at the same time being in general redder and with a
higher M*/Mh than less massive galaxies, it is important to
check if the dependence of the bar fraction on M*/Mh is not
only a reflection of the dependence of M*/Mh on color. Figure 2
middle panels show the co-dependence of the bar fraction on
color and M*/Mh. As reported by previous studies (Nair &
Abraham 2010; Lee+12), we detect a strong dependence on
color, with strong bars preferentially in red galaxies and weak
bars in blue systems. The contour colors indicate a stronger
dependence on color than on the stellar-to-halo mass ratio, but
even at fixed u r- color there is a clear dependence onM*/Mh,
especially for values of M*/Mh 1.7-⩾ with an increase of fbar
for increasing M*/Mh at any u r- value.
In Cervantes-Sodi et al. (2013) we studied the dependence

of the bar fraction on the spin parameter λd using the same

Figure 1. Fraction of barred galaxies fbar as a function of stellar mass M* (a),
halo mass Mh (b), and stellar-to-halo mass ratio (c), for strong, weak, and
strong plus weak bars of our sample.
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• Using near-infrared photometry 
(S4G) of about ~1,000 galaxies.

• HI line widths from the 
literature to estimate dynamical 
masses within optical radius.

• No dependence on Mh at fixed 
M*

S. Díaz-García et al.: Characterization of galactic bars from 3.6 µm S4G imaging
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Fig. 19. Bar fraction as a function of stellar mass (upper panel) and
halo-to-stellar mass ratio (bottom panel) for the di↵erent bar detection
criteria contemplated in this work. The error bars are binomial errors.

Appendix E), although this contrast could be due to our smaller
sample size.

6.2. Dependence of the bar parameters on galaxy mass

It is well known that the scatter among the bar parameters is
very high within the di↵erent Hubble type bins, and therefore
it is natural to study the same parameters also as a function of
galaxy mass.

It appears that the ellipticity of a bar is independent of the
parent galaxy mass (third panel in Fig. 20). The S0s are simply
lacking the highest bar ellipticities, which might be related to
the bar morphology in these galaxies: for example, barlenses and
ansae are typical of early-type galaxies (Laurikainen et al. 2011).
For the bar torque parameter, for which the trend was obvious
in the Hubble sequence, we observe that Qb increases towards
lower galaxy masses. For Amax

2 an opposite correlation is found,
which is expected because the trend with T was also reversed.
None of the bar strength indexes studied as a function of the
stellar mass is clearly segregated in the di↵erent Hubble types
for a given galaxy mass.

The bar sizes in physical units show a correlation with the
total stellar mass (see the lowest panel of Fig. 20), which is quite
natural (massive galaxies have larger stellar structures in gen-
eral). E2005 observed that late-type spiral galaxies seem to have
no correlation between bar size and either the disk scale length
or the absolute magnitude of the host galaxies (with the galaxy
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Strategy

• Using the same galaxy sample for bar classification (Lee 
et al. 2012 & Cervantes Sodi et al. 2015)

• HI line width estimates from ALFALFA for a more 
direct and homogeneous approach to estimate dynamical 
masses

• We looked at the dependence of the bar fraction on disk-
to-halo mass fraction and gas content.

• Our original sample reduces from ~10,000 galaxies to 
~1,500



Two different halo mass estimates

• The dynamical mass within the 
HI disk radius

• Given that we don’t count with 
the HI disk radius, we estimated 
it though (Lelli et al. 2016)

4 Cervantes Sodi
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FIG. 2.— The fraction of barred galaxies fbar as a function of: (a) stellar-to-dynamic mass ratio M⇤/Mdyn, (b) baryonic-to-dynamic mass ratio Mbaryon/Mdyn,
(c) stellar-to-halo mass ratio M⇤/Mhalo, and (d) bayonic-to-halo mass ratio Mbaryon/Mhalo.

Gavazzi et al. 2015), at least for the case of strong bars, an
expected result given that bars form earlier in massive galax-
ies, as previously shown by Sheth et al. (2008) and Kraljic,
Bournaud & Martig (2012). Error bars in all figures denote
the estimated 1� confidence intervals based on the bootstrap-
ping resampling method. The corresponding result using the
baryonic mass is presented in Figure 1b, where is noticeable
a slight increase of the bar fraction for increasing baryonic
mass, but the trend is less dramatic than the one present as a
function of stellar mass. This might be due to the fact that
an increase in Mbaryon can be the result of an increase of M⇤
but also and increase of Mgas, and as will be discussed in
section 3.3, an increase of M⇤ promotes the growth of the
bar, but an increase of Mgas hinders the growth of the bar.

To study the dependence of the bar fraction on the halo
mass, we employ two estimates. We calculate the dynami-
cal mass Mdyn, as the mass responsible for establishing a flat
rotation curve with amplitude Vrot within the HI disk radius;

Mdyn =
RHIV 2

rot

G
. (4)

Given that we do not count with rotation curves, we follow
Broeils & Rhee (1997) to estimate the radius of the HI disk
(RHI) in terms of the HI mass using one of the tightest scal-

ing relations of galaxy disks (Lelli, McGaugh & Schombert
2016):

log MHI = 1.96 log DHI + 6.52, (5)

with RHI = DHI/2.
The fraction of barred galaxies as a function of dynamical

mass is shown in Figure 1c, where fbar seems to be indepen-
dent of Mdyn.

As a second estimate for the halo mass we turn to the study
by van den Bosch (2002), where he explored different virial
mass estimators for disk galaxies using models for the forma-
tion of these kind of galaxies. The best estimator, with the
smallest scatter, is a combination of circular velocity and disk
scale radius rd, of the form:

Mhalo = 2.54⇥1010M�

✓
rd

kpc

◆✓
Vrot

100 km s-1

◆
. (6)

The result using Mhalo (Figure 1d) is very similar to the one
using Mdyn, with little or no dependence of the bar fraction
on either of these mass estimates, a result in agreement with
Martínez & Muriel (2009) and Wilman & Erwin (2012) who
found no evidence of bars preferring any particular halo mass.

8

Figure 3. Stellar-H I scaling relations. Galaxies are color-coded by Hubble type. In each panel, the dashed line shows a linear fit. Top

left : MH I versus RH I . The dotted line shows the expected relation for H I disks with a constant mean surface density of 3.5 M� pc�2.
Top right : MH I versus L[3.6]. The dotted line shows M? = Mgas for ⌥? = 0.5 M�/L�. Bottom: RH I versus Re↵ (left) and Rd (right).

LK ' 1.3L[3.6] (Schombert & McGaugh 2014a), these
values correspond to ⌥? ' 0.2 M�/L� at [3.6]. Angus
et al. (2016) re-analized the DMS data pointing out that
the DM contribution to the vertical force become signif-
icant for such submaximal disks: when DM haloes are
included in a self-consistent way, the mean value of ⌥?
further decreases to ⇠0.18M�/L� in theK-band (⇠0.14
M�/L� at [3.6]). These results are in tension with SPS
models (McGaugh & Schombert 2014; Meidt et al. 2014;
Schombert & McGaugh 2014a), which find mean values
between ⇠0.6 and ⇠0.8 M�/L� in the K-band (⇠0.4 to
⇠0.6 M�/L� at [3.6]) depending on the model and IMF.
Interestingly, both the DMS and SPS models suggest

that ⌥? is nearly constant in the NIR (within ⇠0.1 dex)
among galaxies of di↵erent masses and morphologies.
The discrepancy is only in the overall normalization of
⌥?. A nearly constant ⌥? at [3.6] is also suggested by
the BTFR (McGaugh & Schombert 2015), which is re-
markably tight for a fixed ⌥? (Lelli et al. 2016). Thus,
we assume that ⌥? is constant among di↵erent galax-
ies and explore di↵erent normalizations. For 32 galaxies

with significant bulges, however, we adopt

⌥bul = 1.4⌥disk, (7)

as suggested by SPS models (Schombert & McGaugh
2014a). Hereafter, the di↵erent normalizations of ⌥? al-
ways refer to the stellar disk, i.e. ⌥? = ⌥disk.

5.2. Gas Fractions

We define the gas fraction as

fgas =
Mgas

Mbar
=

Mgas

Mgas +⌥?Ldisk + 1.4⌥?Lbul
, (8)

where Ldisk and Lbul are estimated using the non-
parametric decompositions in Sect. 3.3. Figure 4 plots
fgas versus L[3.6] assuming ⌥? = 0.5 M�/L� (left) and
⌥? = 0.2 M�/L� (right). For any realistic value of ⌥?,
the gas fraction anticorrelates with L[3.6] but the overall
shapes of these relations significantly change with ⌥?.
A value of ⌥? ' 0.5 M�/L� minimizes the scat-

ter around the BTFR (Lelli et al. 2016) and is found

4 Cervantes Sodi
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FIG. 2.— The fraction of barred galaxies fbar as a function of: (a) stellar-to-dynamic mass ratio M⇤/Mdyn, (b) baryonic-to-dynamic mass ratio Mbaryon/Mdyn,
(c) stellar-to-halo mass ratio M⇤/Mhalo, and (d) bayonic-to-halo mass ratio Mbaryon/Mhalo.

Gavazzi et al. 2015), at least for the case of strong bars, an
expected result given that bars form earlier in massive galax-
ies, as previously shown by Sheth et al. (2008) and Kraljic,
Bournaud & Martig (2012). Error bars in all figures denote
the estimated 1� confidence intervals based on the bootstrap-
ping resampling method. The corresponding result using the
baryonic mass is presented in Figure 1b, where is noticeable
a slight increase of the bar fraction for increasing baryonic
mass, but the trend is less dramatic than the one present as a
function of stellar mass. This might be due to the fact that
an increase in Mbaryon can be the result of an increase of M⇤
but also and increase of Mgas, and as will be discussed in
section 3.3, an increase of M⇤ promotes the growth of the
bar, but an increase of Mgas hinders the growth of the bar.

To study the dependence of the bar fraction on the halo
mass, we employ two estimates. We calculate the dynami-
cal mass Mdyn, as the mass responsible for establishing a flat
rotation curve with amplitude Vrot within the HI disk radius;

Mdyn =
RHIV 2

rot

G
. (4)

Given that we do not count with rotation curves, we follow
Broeils & Rhee (1997) to estimate the radius of the HI disk
(RHI) in terms of the HI mass using one of the tightest scal-

ing relations of galaxy disks (Lelli, McGaugh & Schombert
2016):

log MHI = 1.96 log DHI + 6.52, (5)

with RHI = DHI/2.
The fraction of barred galaxies as a function of dynamical

mass is shown in Figure 1c, where fbar seems to be indepen-
dent of Mdyn.

As a second estimate for the halo mass we turn to the study
by van den Bosch (2002), where he explored different virial
mass estimators for disk galaxies using models for the forma-
tion of these kind of galaxies. The best estimator, with the
smallest scatter, is a combination of circular velocity and disk
scale radius rd, of the form:

Mhalo = 2.54⇥1010M�

✓
rd

kpc

◆✓
Vrot

100 km s-1

◆
. (6)

The result using Mhalo (Figure 1d) is very similar to the one
using Mdyn, with little or no dependence of the bar fraction
on either of these mass estimates, a result in agreement with
Martínez & Muriel (2009) and Wilman & Erwin (2012) who
found no evidence of bars preferring any particular halo mass.

(half the intrinsic scatter of the BTF)



Second halo mass estimate

• The halo mass computed using 
the estimate by van den Bosch 
(2002):

20
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FIG. 2.— The fraction of barred galaxies fbar as a function of: (a) stellar-to-dynamic mass ratio M⇤/Mdyn, (b) baryonic-to-dynamic mass ratio Mbaryon/Mdyn,
(c) stellar-to-halo mass ratio M⇤/Mhalo, and (d) bayonic-to-halo mass ratio Mbaryon/Mhalo.

Gavazzi et al. 2015), at least for the case of strong bars, an
expected result given that bars form earlier in massive galax-
ies, as previously shown by Sheth et al. (2008) and Kraljic,
Bournaud & Martig (2012). Error bars in all figures denote
the estimated 1� confidence intervals based on the bootstrap-
ping resampling method. The corresponding result using the
baryonic mass is presented in Figure 1b, where is noticeable
a slight increase of the bar fraction for increasing baryonic
mass, but the trend is less dramatic than the one present as a
function of stellar mass. This might be due to the fact that
an increase in Mbaryon can be the result of an increase of M⇤
but also and increase of Mgas, and as will be discussed in
section 3.3, an increase of M⇤ promotes the growth of the
bar, but an increase of Mgas hinders the growth of the bar.

To study the dependence of the bar fraction on the halo
mass, we employ two estimates. We calculate the dynami-
cal mass Mdyn, as the mass responsible for establishing a flat
rotation curve with amplitude Vrot within the HI disk radius;

Mdyn =
RHIV 2

rot

G
. (4)

Given that we do not count with rotation curves, we follow
Broeils & Rhee (1997) to estimate the radius of the HI disk
(RHI) in terms of the HI mass using one of the tightest scal-

ing relations of galaxy disks (Lelli, McGaugh & Schombert
2016):

log MHI = 1.96 log DHI + 6.52, (5)

with RHI = DHI/2.
The fraction of barred galaxies as a function of dynamical

mass is shown in Figure 1c, where fbar seems to be indepen-
dent of Mdyn.

As a second estimate for the halo mass we turn to the study
by van den Bosch (2002), where he explored different virial
mass estimators for disk galaxies using models for the forma-
tion of these kind of galaxies. The best estimator, with the
smallest scatter, is a combination of circular velocity and disk
scale radius rd, of the form:

Mhalo = 2.54⇥1010M�

✓
rd

kpc

◆✓
Vrot

100 km s-1

◆
. (6)

The result using Mhalo (Figure 1d) is very similar to the one
using Mdyn, with little or no dependence of the bar fraction
on either of these mass estimates, a result in agreement with
Martínez & Muriel (2009) and Wilman & Erwin (2012) who
found no evidence of bars preferring any particular halo mass.
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DeBuhr et al. 2012

• Live stellar disks in dark matter 
halos from the Aquarius Project

• Halo masses:

C > D > A > B

Mon. Not. R. Astron. Soc. 426, 983–999 (2012) doi:10.1111/j.1365-2966.2012.21910.x

Stellar discs in Aquarius dark matter haloes

Jackson DeBuhr,1⋆ Chung-Pei Ma1 and Simon D. M. White2

1Department of Astronomy, University of California, Berkeley, CA 94720, USA
2Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany

Accepted 2012 August 10. Received 2012 August 8; in original form 2012 May 28

ABSTRACT
We investigate the gravitational interactions between live stellar discs and their dark matter
haloes, using " cold dark matter haloes similar in mass to that of the Milky Way taken from
the Aquarius Project. We introduce the stellar discs by first allowing the haloes to respond to
the influence of a growing rigid disc potential from z = 1.3 to 1.0. The rigid potential is then
replaced with star particles which evolve self-consistently with the dark matter particles until
z = 0.0. Regardless of the initial orientation of the disc, the inner parts of the haloes contract
and change from prolate to oblate as the disc grows to its full size. When the disc’s normal is
initially aligned with the major axis of the halo at z = 1.3, the length of the major axis contracts
and becomes the minor axis by z = 1.0. Six out of the eight discs in our main set of simulations
form bars, and five of the six bars experience a buckling instability that results in a sudden
jump in the vertical stellar velocity dispersion and an accompanying drop in the m = 2 Fourier
amplitude of the disc surface density. The bars are not destroyed by the buckling but continue
to grow until the present day. Bars are largely absent when the disc mass is reduced by a factor
of 2 or more; the relative disc-to-halo mass is therefore a primary factor in bar formation and
evolution. A subset of the discs is warped at the outskirts and contains prominent non-coplanar
material with a ring-like structure. Many discs reorient by large angles between z = 1 and 0,
following a coherent reorientation of their inner haloes. Larger reorientations produce more
strongly warped discs, suggesting a tight link between the two phenomena. The origins of
bars and warps appear independent: some discs with strong bars show little disturbances at
the outskirts, while the discs with the weakest bars show severe warps.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics
– galaxies: structure – cosmology: theory – dark matter.

1 I N T RO D U C T I O N

At low redshift stellar discs are ubiquitous in galaxies of similar
mass to the Milky Way. The properties of these discs show many
regularities (see the review by van der Kruit & Freeman 2011 and
references therein), but reproducing these regularities in simulations
of galaxy formation in a " cold dark matter ("CDM) universe has
been a major challenge, although recent improvements in subgrid
physics and numerical resolution have begun to result in discs that
resemble those seen in dwarf galaxies and the Milky Way (e.g.
Governato et al. 2010; Agertz, Teyssier & Moore 2011; Guedes et al.
2011). Each disc is simulated under a specific schematic represen-
tation of the feedback physics, and at considerable computational
costs.

Results from the Aquila comparison project (Scannapieco et al.
2012), however, suggest that the latest hydrodynamic simulations

⋆E-mail: debuhj@berkeley.edu

cannot yet uniquely predict the properties of baryons in a galaxy,
even when the assembly history of its host halo is fully specified.
When a common dark matter halo is re-simulated with gas with nine
cosmological hydrodynamic codes, large code-to-code differences
are found in the z = 0 stellar mass, size, morphology and gas con-
tent. The variations are mainly due to the different implementations
of feedback. The feedback models that are more effective at sup-
pressing the baryonic mass in the galaxy are better at matching the
observed scaling relations of the global properties of the galaxies,
but they do not necessarily produce more realistic discs.

The goal of this paper is to investigate the gravitational interac-
tions between live stellar discs and their dark matter haloes, when
these are themselves evolving in their full cosmological context.
Rather than focusing on how to form a disc with realistic structure,
we choose to study how preformed stellar discs are influenced by
the cosmologically driven evolution of the haloes in which they
are embedded. We use haloes from the Aquarius Project (Springel
et al. 2008) because they provide a particularly well-studied set of
high-resolution haloes of similar mass.

C⃝ 2012 The Authors
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Figure 6. Strengths of stellar bars measured by the m = 2 mode, A2, in the
inner 2Rd for the discs in each halo for the minor (top) and major (bottom)
orientations. Halo C (blue) develops the weakest bar, while the m = 2 mode
grows with time for haloes A (red), B (green) and D (black).

4.3 Disc heating and velocity profiles

In addition to the shape of the disc, the velocity structure of the disc
evolves during the simulation. We define the following quantity to
characterize the vertical heating of the disc. For a cumulative radial
disc mass profile M(R) and a vertical velocity dispersion profile
σ z(R), we use

ζ =
∫ 2Rd

0
dM
dR

σ 2
z (R)dR

∫ 2Rd
0

dM0
dR

σ 2
z,0(R)dR

, (6)

where subscript ‘0’ in the denominator denotes that these quantities
are evaluated for the initial redshift of the live phase (z = 1.0). The
limit of integration is set to twice the scale radius, as in the A2

definition above.
The evolution of ζ with redshift is given in Fig. 7 for discs in

the minor (top) and major (bottom) orientations. The halo-to-halo
variation is striking. Once again, vertical heating is negligible in the
CMajor disc, in which ζ stays at unity throughout the simulation.
The CMinor disc experiences a gradual increase of only ∼30 per
cent in ζ between z = 1 and 0. By contrast, ζ jumps from 1 to 2–2.5
suddenly at z ∼ 0.5–0.7 for the discs in the other three haloes. This
jump in ζ is accompanied by a dip in the bar strength A2 at a similar
redshift, as a result of bar buckling (see Fig. 6 and the previous
subsection).
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Figure 7. Evolution of the vertical heating parameter ζ (defined in equa-
tion 6) for the discs in the minor (top) and major (bottom) orientations. The
discs that form a strong bar, which eventually buckles, all show a large jump
in ζ during buckling. The two C discs have the weakest bars and show little
heating.

The complete set of profiles of the stellar velocity dispersions in
three directions about the disc plane is shown in Figs 8 and 9 for
the discs in the minor and major orientations, respectively. In each
figure, the three columns show the azimuthal (left), radial (middle)
and vertical (right) components of the stellar velocity dispersion.
Within each panel, six snapshots between z = 1 and 0 are plotted.

In the vertical direction in the inner R ∼ 10 kpc of the disc, jumps
in σ z are clearly seen between z ∼ 0.7 and 0.5 for the five discs
AMinor, BMinor, DMinor, BMajor and DMajor, as was shown in
Fig. 7. For the other three discs, AMajor’s σ z at small R increases
more gradually without a sudden jump, while σ z stays nearly con-
stant for CMajor and CMinor, which do not form a significant bar.
This behaviour is again consistent with Fig. 7.

In the vertical direction at radii beyond 10 kpc, some discs show
a sharp increase in σ z in Figs 8 and 9. The rise is particularly
prominent for the three discs CMinor, DMinor and CMajor, in which
σ z reaches !150 km s−1 at R ∼ 20–40 kpc. The edge-on images in
Fig. 3 indeed show that these three discs contain an extended diffuse
component of stars outside the disc plane, spreading to tens of kpc.
This component gives rise to the sharp increase in the mean vertical
height in the three objects in Figs 4 and 5. The AMajor disc also
exhibits a similar behaviour to a lesser extent. The AMinor disc, by

C⃝ 2012 The Authors, MNRAS 426, 983–999
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Figure 16. Compilation of the measured bar strength parameter A2 at z = 0
in our simulation set versus the Qbar parameter of Efstathiou et al. (1982).
We here collect results for all of our runs (except for the late insertion and
reorientation ones). Different colours are used for the different Aquarius
haloes, and different symbols for the different simulation series, as indicated
in the legend (the number in the symbol key refers to series number in
Table 1). It is clear that the criterion Qbar ≥ 1.1 formulated by Efstathiou
et al. (1982) for indicating stability against bar formation provides a rough
guide for our restricted class of simulations, even though it has been shown
to fail in more general situations (Athanassoula 2008). Parameters such as
minor or major disc orientation, or the residual asphericity of the dark matter
halo, appear to be only of secondary importance.

still serves as a surprisingly robust indicator, even in the light of all
sorts of other complicating factors. In particular, we note that the
different symbols in the figure show a broad range of simulation
models, including runs with and without bulge, with minor or major
axis orientation, with ordinary or artificially rounded dark matter
haloes, etc. Irrespective of these factors, it appears that the strength
of the disc self-gravity relative to the supporting spheroidal po-
tential is by far the most decisive parameter for governing stability
against the formation of strong bars. We note that this therefore can-
not be ignored in the interpretation of mass models derived for the
Milky Way. For example, the rotation curve decomposition derived
by Bovy & Rix (2013) suggests that the corresponding live galaxy
model should be violently bar unstable according to our results.

In light of these differences, it is now interesting to consider the
stability of these models with respect to the spatial orientation of
the discs. In Fig. 17 we show results for several of our modified
runs, including the ones with lighter discs, the ones with a bulge,
the ones with a very massive bulge, and the ones for a rounded dark
matter halo. The latter are for the pure disc case (series #6), but the
results for the bulge case (series #7) look essentially identical.

Comparing with the corresponding results in Fig. 4 for the pure
disc case, it is evident that the amount of disc tumbling is fairly
independent of the structural properties of the galaxies. In particular,
it does not matter much whether a bar is present or not. Apparently,
the reorientation of the disc is primarily controlled by the tumbling
of the dark matter halo and the torques it exerts on the disc, and this
is only marginally affected by the growth of the baryonic disc/bulge
system. Only when the haloes are artificially rounded and any figure
rotation of the inner dark matter halo is stopped by construction,
the disc orientation remains stationary. Except for halo F – its disc

turns even in this case by a substantial angle, starting at z ≃ 0.35.
The same characteristic turning motion of F discs is also seen in
the standard runs at this time, indicating that this is caused by the
fly-by of a massive substructure that interacts with the disc at this
time and torques it substantially.

The results above suggest that disc tumbling of significant size
is virtually inevitable in CDM haloes. We expect typical tumbling
rates of about 40◦ from z = 1 to 0, or about ∼6◦–7◦ Gyr−1 on
average. Some systems may have up to 2–3 times that, while others
stay below it by a similar factor. Occasionally, discs may also be
brought into a turning motion by a close encounters with a sub-
structure. Importantly, our results show that discs can survive such
reorientations largely unaffected, i.e. they are not in apparent con-
flict with the observed abundance of thin stellar discs.

6 IM PAC T O F SU B S T RU C T U R E S

CDM subhaloes contain a large amount of substructures, raising the
question whether they may interfere with the stability of cold stellar
discs and induce substantial heating. We note however that it is well
established that substructures populate primarily the outer parts of
dark matter haloes (e.g. Ghigna et al. 1998; Diemand, Moore &
Stadel 2004; Springel et al. 2008a), leaving the inner halo relatively
smooth. Also, the subhalo mass function is skewed very slightly to
being dominated by the most massive subhalo systems. Those are
expected to dominate the heating (Springel et al. 2008a), but their
number is small.

We here use our models to check whether subhaloes contribute
significantly to the disc heating, and whether the disc in turn plays a
significant role in reducing substructure abundance when they pass
through pericentre and experience gravitational tidal shocks from
the disc or the enhanced central cusp. There is a body of previous
work on this subject (e.g. Kazantzidis et al. 2008, 2009; Purcell,
Kazantzidis & Bullock 2009; D’Onghia et al. 2010), largely based
on much simpler toy simulations than studied here. Our analysis
is so far the most elaborate attempt to study this in the correct
cosmological setting, and in particular takes the expected system-
to-system variation into account.

We consider first the subhalo abundance in runs without any disc
(i.e. these are dark matter only runs of A–H at z = 0), and com-
pare it to the one found at z = 0 in our default runs with disc. In
Fig. 18, we show the cumulative abundance of substructures as a
function of mass in both types of simulations. To emphasize the
mean difference in a clear way we show the averaged abundance
over all eight systems we simulated; we note that orienting the disc
along minor or major axis makes no difference here. There is a
∼30 per cent reduction of substructure abundance across all mass
scales in the runs with the disc. This can be understood as an effect
of accelerated substructure depletion due to the gravitational shocks
the substructures experience as they pass through the disc. This en-
hanced destruction rate shows up particularly strongly in the halo
centre, as evidenced by Fig. 19, which gives the cumulative average
abundance of substructures with mass larger than 6 × 107 M⊙ as
a function of radius. In the inner parts of the halo, there is about a
factor of 2 reduction of the subhalo abundance. These results are in
good agreement with the analysis of D’Onghia et al. (2010), who
carried out orbit integrations for the subhaloes found in the dark
matter only simulations of Aquarius and estimated their evapora-
tion rate analytically by summing up the impact of gravitational
shocks (Ostriker, Spitzer & Chevalier 1972) experienced during
disc passages.
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Figure 16. Compilation of the measured bar strength parameter A2 at z = 0
in our simulation set versus the Qbar parameter of Efstathiou et al. (1982).
We here collect results for all of our runs (except for the late insertion and
reorientation ones). Different colours are used for the different Aquarius
haloes, and different symbols for the different simulation series, as indicated
in the legend (the number in the symbol key refers to series number in
Table 1). It is clear that the criterion Qbar ≥ 1.1 formulated by Efstathiou
et al. (1982) for indicating stability against bar formation provides a rough
guide for our restricted class of simulations, even though it has been shown
to fail in more general situations (Athanassoula 2008). Parameters such as
minor or major disc orientation, or the residual asphericity of the dark matter
halo, appear to be only of secondary importance.

still serves as a surprisingly robust indicator, even in the light of all
sorts of other complicating factors. In particular, we note that the
different symbols in the figure show a broad range of simulation
models, including runs with and without bulge, with minor or major
axis orientation, with ordinary or artificially rounded dark matter
haloes, etc. Irrespective of these factors, it appears that the strength
of the disc self-gravity relative to the supporting spheroidal po-
tential is by far the most decisive parameter for governing stability
against the formation of strong bars. We note that this therefore can-
not be ignored in the interpretation of mass models derived for the
Milky Way. For example, the rotation curve decomposition derived
by Bovy & Rix (2013) suggests that the corresponding live galaxy
model should be violently bar unstable according to our results.

In light of these differences, it is now interesting to consider the
stability of these models with respect to the spatial orientation of
the discs. In Fig. 17 we show results for several of our modified
runs, including the ones with lighter discs, the ones with a bulge,
the ones with a very massive bulge, and the ones for a rounded dark
matter halo. The latter are for the pure disc case (series #6), but the
results for the bulge case (series #7) look essentially identical.

Comparing with the corresponding results in Fig. 4 for the pure
disc case, it is evident that the amount of disc tumbling is fairly
independent of the structural properties of the galaxies. In particular,
it does not matter much whether a bar is present or not. Apparently,
the reorientation of the disc is primarily controlled by the tumbling
of the dark matter halo and the torques it exerts on the disc, and this
is only marginally affected by the growth of the baryonic disc/bulge
system. Only when the haloes are artificially rounded and any figure
rotation of the inner dark matter halo is stopped by construction,
the disc orientation remains stationary. Except for halo F – its disc

turns even in this case by a substantial angle, starting at z ≃ 0.35.
The same characteristic turning motion of F discs is also seen in
the standard runs at this time, indicating that this is caused by the
fly-by of a massive substructure that interacts with the disc at this
time and torques it substantially.

The results above suggest that disc tumbling of significant size
is virtually inevitable in CDM haloes. We expect typical tumbling
rates of about 40◦ from z = 1 to 0, or about ∼6◦–7◦ Gyr−1 on
average. Some systems may have up to 2–3 times that, while others
stay below it by a similar factor. Occasionally, discs may also be
brought into a turning motion by a close encounters with a sub-
structure. Importantly, our results show that discs can survive such
reorientations largely unaffected, i.e. they are not in apparent con-
flict with the observed abundance of thin stellar discs.

6 IM PAC T O F SU B S T RU C T U R E S

CDM subhaloes contain a large amount of substructures, raising the
question whether they may interfere with the stability of cold stellar
discs and induce substantial heating. We note however that it is well
established that substructures populate primarily the outer parts of
dark matter haloes (e.g. Ghigna et al. 1998; Diemand, Moore &
Stadel 2004; Springel et al. 2008a), leaving the inner halo relatively
smooth. Also, the subhalo mass function is skewed very slightly to
being dominated by the most massive subhalo systems. Those are
expected to dominate the heating (Springel et al. 2008a), but their
number is small.

We here use our models to check whether subhaloes contribute
significantly to the disc heating, and whether the disc in turn plays a
significant role in reducing substructure abundance when they pass
through pericentre and experience gravitational tidal shocks from
the disc or the enhanced central cusp. There is a body of previous
work on this subject (e.g. Kazantzidis et al. 2008, 2009; Purcell,
Kazantzidis & Bullock 2009; D’Onghia et al. 2010), largely based
on much simpler toy simulations than studied here. Our analysis
is so far the most elaborate attempt to study this in the correct
cosmological setting, and in particular takes the expected system-
to-system variation into account.

We consider first the subhalo abundance in runs without any disc
(i.e. these are dark matter only runs of A–H at z = 0), and com-
pare it to the one found at z = 0 in our default runs with disc. In
Fig. 18, we show the cumulative abundance of substructures as a
function of mass in both types of simulations. To emphasize the
mean difference in a clear way we show the averaged abundance
over all eight systems we simulated; we note that orienting the disc
along minor or major axis makes no difference here. There is a
∼30 per cent reduction of substructure abundance across all mass
scales in the runs with the disc. This can be understood as an effect
of accelerated substructure depletion due to the gravitational shocks
the substructures experience as they pass through the disc. This en-
hanced destruction rate shows up particularly strongly in the halo
centre, as evidenced by Fig. 19, which gives the cumulative average
abundance of substructures with mass larger than 6 × 107 M⊙ as
a function of radius. In the inner parts of the halo, there is about a
factor of 2 reduction of the subhalo abundance. These results are in
good agreement with the analysis of D’Onghia et al. (2010), who
carried out orbit integrations for the subhaloes found in the dark
matter only simulations of Aquarius and estimated their evapora-
tion rate analytically by summing up the impact of gravitational
shocks (Ostriker, Spitzer & Chevalier 1972) experienced during
disc passages.
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Figure 9. Bar strength parameter A2 (left-hand panel) and relative vertical heating (right-hand panel) in the simulations of our default pure disc insertion
simulations (series #1), as a function of time. It is clearly seen that all the models develop a strong bar characterized by A2 ≃ 0.6, except for model E, which
yields A2 ∼ 0.3 at the end. The latter model is special as it shows substantial vertical heating right after the disc becomes live. This is because this system is
instable against axisymmetric instabilities (see Fig. 6). The dashed lines in the two panels illustrate the average simulation behaviour.

DeBuhr et al. (2012), for example, we find the same characteristic
evolution pattern for haloes A and C. This is reassuring, given the
independent and at a technical level quite different methodology to
introduce and simulate the live discs. However, there are also some
quantitative differences, and for a subset of the systems we tend to
find somewhat smaller angles than DeBuhr et al. (2012).

4.2 Radial and vertical structure, and its evolution

As pointed out by DeBuhr et al. (2012), it is perhaps not too surpris-
ing that these systems show such strong tendencies to form bars.
Whereas their rotation curve structure, shown in Fig. 5, in principle
suggests that the discs are not exceeding the rotation curve contri-
bution of the dark matter anywhere (apart from halo G for a small
region) and are thus far away from being maximal discs, the sim-
ple criterion of Efstathiou, Lake & Negroponte (1982) for stability
against bar formation,

Qbar ≡ vmax

(GMd/Rd)1/2
> 1.1, (1)

is violated for all the models. Here vmax is the maximum rotation
curve velocity, and Md and Rd refer to mass and scale-length of the
exponential stellar disc. In fact, the values for Qbar after the discs
have been inserted are 0.99, 0.79, 1.0, 0.88, 0.87, 0.82, 0.85, and
0.92, for A–H, respectively.

It should be noted however that the simple criterion of equa-
tion (1) is not particularly reliable in general disc systems. In fact,
Athanassoula (2008) has given a number of counter-examples that
violate this criterion for bar instability. For example, if a disc is
supported by a high radial velocity dispersion it can evade forming
a bar even if the criterion by Efstathiou et al. (1982) is violated.
Similarly, Athanassoula & Misiriotis (2002) have shown examples
for bar growth in massive, quite concentrated haloes where this
would have been unexpected according to the criterion. However,
our disc systems were all initialized as isotropic rotators, and hence
form a more restricted class of models for which equation (1) can
still be useful to assess the relative susceptibility to bar formation.

In this context it is also interesting to look at Toomre’s stability
parameter for axisymmetric stability of stellar discs (Toomre 1964):

QToomre ≡ σR κ

3.36 G #
> 1, (2)

where σ R is the radial velocity dispersion, # the surface density,
and

κ2 = 3
R

∂$

∂R
+ ∂2$

∂R2
(3)

is the epicycle frequency. The value of QToomre is shown as a function
of radius in Fig. 6. Interestingly, most of the models are Toomre
stable, with B and F being marginal cases, but the light halo E is
clearly predicted to be unstable against axisymmetric instabilities.
And indeed, inspecting the stellar images at z = 0.85 in Fig. 1 one
can clearly see ring-like spherical features that are absent in this
form in the other models, providing evidence that such instabilities
have occurred in the early evolution of the system.

We find further signs for this special evolution of halo E in the
evolution of the structural properties of the systems, which we
examine next. In Fig. 7 we show the radial and vertical density
profiles, at a set of different times. The exponential surface density
profile measured for the face-on orientation of the discs is quite
robust and more or less retains its initial shape, despite the rather
dramatic bar formation events occurring in these simulations. In
contrast, the vertical density profiles (three families of curves are
shown, corresponding to different radial ranges, as labelled) show
the damaging impact of the forming bars more clearly. In particular,
a relatively sudden transition to a new vertical equilibrium with a
thicker profile is apparent in most of the models. One interesting
difference with DeBuhr et al. (2012) is that our models A–D show
substantially less broadening in the outer parts of the discs. This is
presumably a reflection of our more accurate approach to initialize
the velocities of the initial disc models.

Further support for this is provided by the evolution of kinematic
quantities, for example those shown in Fig. 8. The eight panels on
top in the figure give the evolution of the profiles of the vertical
velocity dispersion σ 2

z , while the bottom eight measure the disc

MNRAS 452, 2367–2387 (2015)

 at U
niversidad N

acional A
utonom

a de M
exico on July 1, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



The dynamics of stellar disks in live halos 11

0 5 10 15 20

t (Gyr)

0.0

0.2

0.4

0.6

0.8

1.0

A

2,
m
ax

md1mb1
md0.5mb1
md0.4mb1

md0.3mb1
md0.1mb1

0 5 10 15 20

t (Gyr)

0

2

4

6

8

10

12

R

b
(
k
p
c
)

md1mb1
md0.5mb1

md0.4mb1
md0.3mb1
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Figure 8. Same as Fig. 7 but for models md0.5mb0, md0.5mb1, md0.5mb3, md0.5mb4, and md0.5mb4rb3.

the combination of B/D and G, we create an additional set
of models. Here we measure the properties in the initial re-
alizations without actually running the simulations. When
we keep the disk mass fraction ( fd) and the bulge scale-
length (rb) fixed then G increases as B/D increases. Even
when we compare models that have similar B/D and fd, we
find that models with a larger rb have a larger G. And when
we increase fd, while keeping B/D fixed, then G increases.
We also tested the e↵ect of the halo scale length parameter
but found that this did not a↵ect B/D or G substantially.
These sequential changes in the relation between B/D and G
are summarized in Fig. C1 of Appendix C, and the detailed
parameters of the individual models are summarized in Ta-
bles C1 and C2. Thus, galaxies with a massive bulge tend
to form tightly-wound spirals, but the shear rate (G) is more
essential to the pitch angle than B/D.

In addition, we look at the relation between B/D and
the bar formation epoch (tb). We present this using the red
symbols for models with B/D > 0.5 in Fig. 9. Models with
a large B/D tend to take a shorter time before the bar for-

mation, but compared to the dependence on fd, the e↵ect of
B/D on tb is unclear.

Summarizing all our simulated results, we conclude that
the disk-to-total mass fraction ( fd) and the shear rate (G)
are important parameters that decide the disk galaxy mor-
phology, such as the number of spiral arms, the pitch angle,
and the formation of a bar.

4 DISCUSSIONS

4.1 Hubble sequence and galaxy morphology

We performed N-body simulations of disk galaxies which
start in an axisymmetric equilibrium state and which form
spiral and bar structures. Using these simulations we investi-
gated the relation between changes in the initial state of the
bulge, disk, and halo (initial conditions in the simulations)
and the resulting morphology of the disk galaxies.

Especially the disk-mass fraction ( fd) and shear rate (G)
are important parameters which influence the morphology of
the simulated galaxies. While fd determines the number of
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a bar formed after 13 and 18Gyr, respectively (also see Fig. 7
and Table 4). We continued the simulations up to 15Gyr for
md0.5mb4 and md0.5mb4rb3 to confirm that they form a
bar, which they do around ⇠ 10Gyr.

We subsequently investigate the e↵ect of the bulge mass
on the bar formation. It was suggested that a massive cen-
tral component, such as a bulge, have a stabilizing e↵ect on
the disk and thereby prevents bar formation (Sellwood &
Evans 2001; Saha & Naab 2013). To test this we perform a
set of simulations in which we vary the bulge mass. We make
the bulge 0 (md0.5mb0), 3 (md0.5mb3) and 4 (mb0.5mb4)
times as massive as the bulge of model md0.5mb1. We fur-
ther added model md0.5mb4rb3 with the same mass as
md0.5mb4, but with increased bulge scale length. The ampli-
tude evolution and bar length of these models is presented
in Fig. 8. When the bulge mass fraction increases the bar
formation is delayed due to the the decreasing disk mass-
fraction ( fd) (also see Table 4). These results are consistent
with observations where the fraction of barred galaxies in-
crease when the bulge to disk mass ratio decreases and where
the barred galaxies fraction even increases to ⇠ 87% for the
extreme case of bulge-less galaxies. We further confirm that
the bulge scale length does not e↵ect the epoch of bar for-
mation, but the bar length at the end of the simulation
(at 15Gyr). The final bar length for model md0.4mb4rb3
is longer than that for md0.4mb4 (see Fig. 8). The bar for-
mation epoch for all models is presented in Table 4.

Although increasing the bulge mass sequentially delays
the formation of a bar, the bulge mass fraction is not a
critical parameter for the bar formation. We tested some
parameters and found that the disk-mass to the total mass
fraction is a more critical parameter for the bar formation
epoch.

In Fig. 9, we present the relation between the bar for-
mation epoch and the disk mass fraction, fd(= 1/X

0), where
X

0 is a parameter adopted by Widrow et al. (2008) as a bar
formation criterion:

X

0 ⌘ 1/ fd =

✓
Vc,tot(R)

Vc,d(R)

◆2

R=2.2Rd

. (15)

They argued that X

0 . 3 (for fd & 0.3) is the bar formation
criterion in their simulation. The epoch of bar formation in-
creases exponentially for decreasing disk mass-fraction, al-
though the scatter is large. We fit an exponential function to
our results obtained with Nd = 8M and Q0 = 1.2 and find that
tb = 0.146±0.079exp[(1.38±0.17)/ fd]. The result is indicated
by the dashed black line in Fig. 9.

The resolution of the simulation in the number of par-
ticles is an important source for the scatter (Dubinski et al.
2009); a smaller number of particles for the same model re-
sults in faster bar formation. We confirm this by perform-
ing simulations with an order of magnitude lower resolution
(0.8M disk particles, open circle symbols), and indeed find
that the bar forms earlier for these models in comparison
with the high resolution models (Fig. 9, Table 4). Another
parameter which is known to a↵ect the epoch of bar for-
mation is the value of Q. In Fig. 9 we also plot models
md0.5mb1Q2.0 and md0.5mb1Q0.5, which are identical to
model md0.5mb1, with the exception that Q0 = 2.0 and 0.5,
respectively. As was shown in previous studies (c.f., Athanas-
soula & Sellwood 1986), a larger value of Q0 leads to a delay
in the formation of the bar (see Appendix A2 for details).

The relation between the moment of bar formation (tb)
and the mass fraction of the disk ( fd) can be understood
from Toomre’s X parameter (see Eq. 6). For a given value
of m we can calculate X as a function of the disk radius R.
When we adopt m = 2, i.e. the bar, we obtain X for the bar
mode (X2) as a function of R. This distribution is presented
in Fig. 10. Here, we see that X2 reaches minimum values at
R ⇠ 2 kpc. We find that the minimum value of X2 (Xmin) is
roughly correlated with X

0(= 1/ fd), and the relation between
Xmin and X

0 is presented in Fig. 11. Thus, the disk fraction fd
is connected to Toomre’s X . As shown by Toomre (1981), the
amplitude grows most e�ciently for 1 < X < 2 and decreases
exponentially when X increases from ⇠ 2 to ⇠ 3. We find that
models in which a bar forms have a minimum value of X2 . 2
(see Fig. 10). We conclude, based on these results, that there
is no particular rigid criterion for bar formation, but that the
bar formation epoch starts to increase exponentially when
fd & 0.3, or equivalently, if X

0 . 0.3.
We also test the bar formation criterion previously sug-

gested by Efstathiou et al. (1982), who proposed that bar
formation depends on the mass of the disk (Md) within ra-
dius Rd:

em ⌘
Vc,max

(GMd/Rd)1/2
< 1.1. (16)

Here Vc,max is the maximum circular velocity in the disk.
For this criterion, Athanassoula (2008) showed some excep-
tional cases using N-body simulations of disk models with
live halos. In Table 4, we present em (Eq. 16), and we confirm
that in our simulations Efstathiou’s criterion cannot always
predict the bar formation.

3.4 Bulge-to-Disk mass ratio

From an observational perspective such as in the Hubble se-
quence (Hubble 1926), the bulge-to-disk mass ratio (B/D) is
related to the pitch angle. Sa galaxies have a larger bulge-
to-disk mass-ratio compared to Sb and Sc galaxies (Sandage
1961). To test this hypothesis, we simulate an extra model
(md1mb10), with a much larger B/D than the the other mod-
els.

The disk-to-halo mass ratio of this model is relatively
large (B/D= 1.0), but the disk-to-total mass ratio ( fd = 0.35)
is not as large as for models which form a bar before form-
ing spiral arms. The S0–Sa galaxies, for example, NGC1167
(Zasov et al. 2008) and M104 (Tempel & Tenjes 2006), have
such a massive bulge and also many narrow spiral arms.

In Fig. 12 we present the rotation curves (left panel)
and the surface-density images (middle and right panels) for
model md1mb10. This model formed multiple spiral arms
similar to Sa galaxies before it developed a bar. The mea-
sured pitch angle was ⇠ 20� within 10 kpc but less than 10�

at R > 10 kpc.
In the previous subsection, we demonstrated the rela-

tion between the pitch angle and the shear rate (G). Here,
in Fig. 13, we present the relation between G and the bulge-
to-disk mass ratio (B/D). For our models with fd > 0.3, G
appears to correlate with B/D, however the models with a
small fd tend to have a small G. In the latter sequence, the
bulge mass is similar but the disk mass decreases as B/D

increases and as a result fd decreases.
In order to understand how the initial parameters a↵ect
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md1mb1, md1mb1s0.65, and md1mb1s0.8. For each model, we performed four simulations changing the random seed (varying positions
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Figure A3. Snapshots for models md0.5Rd1.5 (left) and
md0.5Rd1.5s (right).

halos (top panels) there is no continuous angular momen-
tum transfer from the disk to the halo, but we only discern
random variations in the angular momentum. These fluctu-
ations look stronger at outer radii, but this is because the
angular momentum changes are normalized by the disk’ an-
gular momentum, which is smaller in the outer regions.

The angular momentum of the disks vary with time (see
the red and blue stripes in the bottom panels), but overall
the disk loses only 1.9% of its initial angular momentum for
models with spin and 1.7% for models without. The am-
plitude of the stripes for the disks roughly corresponds to
the amplitude of the spiral pattern. In Fig. A6, we show the
total power as a function of cylindrical radius and time for
models md0.5Rd1.5 (left) and md0.5Rd1.5s (right). From
this we conclude that for spiral arms the angular momen-
tum transfer between the disk and the halo is not e�cient.
On the other hand, for barred galaxies the angular momen-
tum flow from the disk to the halo is considerably smaller
for models with a larger halo spin (see Fig. 3 in Long et al.
2014).

A2 Initial Q value

To verify the expectation that the initial value of Toomre’s
Q parameter (Q0) influences the bar and spiral structure, we
created a set of models in which we varied this parameter.

The models are based on md0.5mb0, with one having an
initially unstable disk (md0.5mb0Q0.5) and the other having
a large Q0, in which no spiral arms develop (md0.5mb0Q2.0).
The time evolution of the bar’s amplitude and length is pre-
sented in Fig. A7 and the surface densities are shown in
Fig. A8. For md0.5mb0Q2.0 there is no sign of spiral or bar
structure until ⇠ 5Gyr, but a bar develops shortly after that
(left panel of Fig. A7). This matches with the expectation
that Q0 influences the bar formation epoch, the smaller the
Q0 value the faster the bar forms. The peak amplitude just
after the bar formation is higher for the larger Q0, but the
final amplitude is similar (see the left panel of Fig. A7). We
also confirmed that the final bar length does not depend
on Q0 (see the right panel of Fig. A7). However, the radius
that gives the maximum amplitude is di↵erent for the mod-
els with a large or a small value of Q. The radius for A2,max
is 2.6 and 4.9 kpc for models with Q0 = 0.5 and 2.0, respec-
tively. This result is qualitatively consistent with Hozumi
(2012) where an initially colder disk forms a weaker and
more compact bar due to the smaller velocity dispersion of
the disk (although they stopped their simulation just after
the first amplitude peak).

This further proves (as discussed in Section 3.3) that the
growth rate of swing amplification governs the bar formation
timescale. The growth rate decreases as Q increases (Toomre
1981) which is confirmed by our simulations. With Q0 = 2.0,
the disk is initially stable and hence the spiral structure has
to be induced by the bar. These ring-like spiral arms are
sometimes seen in SB0–SBa galaxies such as NGC5101 (Ho
et al. 2011).

A3 Disk scale length

We further examine models md1mb1Rd1.5 and
md0.5mb1Rd1.5, which have a larger disk length scale. For
these models the total disk mass is the same as that of
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Efstathiou, Lake & Negroponte (1982)

• Stability criterion:

• which in terms of the galactic spin ( λd ) and the disk mass fraction (fd), 
becomes:

• where:                                  and

• Galaxies with high spin and low disk-mass fractions are less susceptible 
to the formation of bars



Low surface brightness (LSB) galaxies formed in high 
spinning haloes

1704 J. Kim and J. Lee

Figure 1. Face-on stellar surface densities in a central 70 kpc box at 1.49 Gyr after the start of the simulation for four different halo spin parameters, λ =
0.03, 0.06, 0.10, 0.14 in the top-left, top-right, bottom-left and bottom-right panel, respectively. The initial baryonic mass fraction in the halo is fb = 0.10. Stars
of age less than 1.0 Gyr are used to estimate surface densities. More information on the suite of simulations and analysis is provided in Sections 3 and 4.1.

As a result, the ratio of "⋆, ave for the case of λ = 0.03 to that of λ =
0.14 becomes larger than 15. This simplified, yet self-consistent
numerical calculation validates the scenario that the disc in a faster-
rotating halo has its star-forming gas extended over a larger area
thanks to the stabilization by the higher angular momentum barrier.
It then entails a lower stellar surface density averaged on the disc.
When a uniform value of the stellar mass-to-light ratio is assumed
across the set of simulated galaxies, the low stellar surface density is
translated into the low surface brightness, giving results consistent
with the previous studies (Jimenez et al. 1998; Boissier et al. 2003;
Avila-Reese et al. 2005).

It is also informative to compare our result with the analytic
predictions by Mo et al. (1998). In Fig. 6, the disc scale radii,
Rs, of the run with fb = 0.10 are drawn, along with the analytic

formulae for the cases of (a) a non-self-gravitating disc embedded
in an isothermal halo5 and (b) a self-gravitating disc embedded in
a more realistic NFW halo (Navarro et al. 1997).6 Obviously, the
scale radius Rs in our simulation monotonically increases with λ,
from 0.92 kpc at λ = 0.03 to 4.4 kpc at λ = 0.14. One could also
notice that the agreement between our numerical result and the
Mo et al. (1998) prediction using a self-gravitating disc in an NFW
halo is surprisingly good despite many simplifications and idealized

5 Rs(λ) = 89.1 λ kpc from equation 12 of Mo et al. (1998), with r200 =
126 kpc for a 2.3 × 1011M⊙ halo and jd = md = 0.1.
6 Rs(λ) = 47.5 λ(λ/0.1)0.211 + 0.0047/λ kpc from equation 28 of Mo et al.
(1998), with r200 = 126 kpc, c = 10 and jd = md = 0.1.
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LSBs are galaxies with 
central surface brightness 
in the B band lower than  
µ0(B)~22 mag/arcsec2



Bars in LSBs

bars. We remind the reader that in the present work, we focus
exclusively on strong bars, given that weak bars are not
resolved in this redshift range (Masters et al. 2011). This is not
an issue regarding strong bars, as we did not find any
dependence of the bar fraction on the size of the galaxies in
pixels. For HSBs, the bar fraction is close to 30%, also in
good agreement with previous works (Eskridge et al. 2000;
Laurikainen et al. 2004; Marinova & Jogee 2007; Lee et al.
2012). As can be appreciated from the figure, the bar fraction
for LSBs is only 20%, systematically lower than the value
estimated for HSBs. The difference of the bar fraction for LSBs
and HSBs is due to the dependence of fbar on the central surface
brightness, as can be appreciated in the top panel of Figure 3,
which shows the dependence of fbar on m ( )B0 , with the vertical
line denoting the value that segregates LSBs to the left from
HSBs to the right. The corresponding figure using the natural
SDSS photometric r-band surface brightness is presented in the
bottom panel of Figure 3, with the same general trend, an
increase of fbar with increasing m ( )r0 .

As mentioned in the introduction, this dependence of the bar
fraction on the surface brightness was already pointed out by
several works using more limited samples (McGaugh &
Bothun 1994; Honey et al. 2016) and was predicted by
CS+13 in the case that LSBs represent the tail of high spinning
galaxies in the general galaxy population. To test this
hypothesis, we used the model proposed by CS+13 to estimate
the spin parameter λ as defined by Peebles (1971)
l = LE GM1 2 5 2, where E is the total energy, M is the mass,
and L is the angular momentum of the configuration. The
model by CS+13 includes a dark matter halo with a truncated
isothermal density profile responsible for establishing a
rigorously flat rotation curve along the whole disk and a disk
with an exponential surface density profile of the form
S = S -( )r e r R

0 d, where S0 is the central surface density and
Rd is the disk scale length. Circular velocities (Vd) are assigned
through a Tully–Fisher relation (Pizagno et al. 2007), and a
disk-to-halo mass ratio ( fd) is adopted following the prescrip-
tion by Gnedin et al. (2007) to finally express λ as

l = -
⎛
⎝⎜

⎞
⎠⎟ ( )

G
f R V M

2
. 3d d d d

2 1

For a detailed description of the model, we refer the reader
to CS+13. The top panel of Figure 4 clearly shows an
anticorrelation between m ( )B0 and λ, confirming our hypothesis
that LSBs form in high spinning systems. In this sense, the
increase of fbar with increasing m ( )B0 is a natural outcome, given
the previous result by CS+13. In the same figure, we include
iso-contours that denote regions of constant fbar obtained by
dividing the parameter space into 10×10 bins, applying a
spline kernel to get a smooth transition, and requiring at least
five galaxies per bin to estimate the bar fraction. A clear trend of
increasing fbar with decreasing λ is noticeable with no
dependence on m ( )B0 at fixed λ. From this figure, it is apparent
that the dependence of fbar on m ( )B0 comes from the marked
correlation between m ( )B0 and λ. For completeness, we show in
the bottom panel of Figure 4 the bar fraction as a function of λ,
recovering the same behavior reported by CS+13 (see their
Figure 1(b)), with a decrease of the bar fraction with increasing
λ. This result is encouraging, given that in the sample used in the
present work the bar identification is made by amateur citizen
scientists, while in the sample employed by CS+13, the

Figure 1. Combined + +g r i color images of examples of LSBs (left panels) and HSBs (right panels) classified as barred (upper panels) and unbarred (lower
panels). Galaxies m ( )B0 values are shown for each case.

Figure 2. Bar fraction as a function of redshift for LSBs and HSBs in our
sample.
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classification is preformed by professional astronomers (Lee
et al. 2012).

As several studies have previously pointed out (Masters
et al. 2012; Oh et al. 2012; Skibba et al. 2012; Cervantes Sodi
et al. 2013; Gavazzi et al. 2015), the bar fraction is a strong
function of stellar mass, with increasing fbar as *M increases.
Likewise, LSBs tend to be less massive than their HSBs
counterparts (Galaz et al. 2011), which could explain why fbar
is lower for LSBs. In Figure 5(a), we explore the co-
dependence of the bar fraction on m ( )B0 and *M . The first
thing to notice on the figure is a general increase of m ( )B0 with
increasing *M . Second, for galaxies with * >M 1010.75, the iso-
contours denoting constant fbar show a strong dependence on
stellar mass, while almost no dependence on m ( )B0 . For less
massive galaxies, a co-dependence with m ( )B0 appears, with
fbar decreasing with increasing central surface brightness. This
kind of bimodality has already being detected. For instance,

Nair & Abraham (2010) showed that the bar fraction presents a
minimum at * ~M 1010.2, a bimodality which is also seen in the
stellar population.
The fraction of barred galaxies is also sensitive to color, fbar

being highest for red galaxies (Nair & Abraham 2010; Masters
et al. 2011; Lee et al. 2012; Oh et al. 2012). Figure 5(b) shows
that fbar depends exclusively on u−r and is independent of
m ( )B0 for red galaxies with - >u r 2, but for blue galaxies,
the dependence of fbar on m ( )B0 is noticeable, stressing the
presence of the aforementioned bimodality.
Using samples of galaxies from the SDSS with H I gas mass

estimates from ALFALFA (Giovanelli et al. 2005), Masters et al.
(2012) and Cervantes Sodi (2017) showed the inhibiting effect
gas has in the formation of bars. Using the H I mass estimate
from Teimoorinia et al. (2017), we explore in Figure 5(c) the
co-dependence of fbar on m ( )B0 and *M MH I , finding that, for

Figure 3. Bar fraction as a function of m ( )B0 (top panel) and m ( )r0 (bottom
panel) for strong bars. The vertical line in the top panel denotes the value that
segregates LSBs to the left and HSBs to the right.

Figure 4. Top panel: bar fraction fbar iso-contours in the m ( )B0 vs. λ plane.
Contours denote regions of constant fbar in the range < <f0.15 0.35bar . Gray
dots represent unbarred galaxies, and black dots represent barred ones. Bottom
panel: bar fraction as a function of the λ spin parameter.
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bars. We remind the reader that in the present work, we focus
exclusively on strong bars, given that weak bars are not
resolved in this redshift range (Masters et al. 2011). This is not
an issue regarding strong bars, as we did not find any
dependence of the bar fraction on the size of the galaxies in
pixels. For HSBs, the bar fraction is close to 30%, also in
good agreement with previous works (Eskridge et al. 2000;
Laurikainen et al. 2004; Marinova & Jogee 2007; Lee et al.
2012). As can be appreciated from the figure, the bar fraction
for LSBs is only 20%, systematically lower than the value
estimated for HSBs. The difference of the bar fraction for LSBs
and HSBs is due to the dependence of fbar on the central surface
brightness, as can be appreciated in the top panel of Figure 3,
which shows the dependence of fbar on m ( )B0 , with the vertical
line denoting the value that segregates LSBs to the left from
HSBs to the right. The corresponding figure using the natural
SDSS photometric r-band surface brightness is presented in the
bottom panel of Figure 3, with the same general trend, an
increase of fbar with increasing m ( )r0 .

As mentioned in the introduction, this dependence of the bar
fraction on the surface brightness was already pointed out by
several works using more limited samples (McGaugh &
Bothun 1994; Honey et al. 2016) and was predicted by
CS+13 in the case that LSBs represent the tail of high spinning
galaxies in the general galaxy population. To test this
hypothesis, we used the model proposed by CS+13 to estimate
the spin parameter λ as defined by Peebles (1971)
l = LE GM1 2 5 2, where E is the total energy, M is the mass,
and L is the angular momentum of the configuration. The
model by CS+13 includes a dark matter halo with a truncated
isothermal density profile responsible for establishing a
rigorously flat rotation curve along the whole disk and a disk
with an exponential surface density profile of the form
S = S -( )r e r R

0 d, where S0 is the central surface density and
Rd is the disk scale length. Circular velocities (Vd) are assigned
through a Tully–Fisher relation (Pizagno et al. 2007), and a
disk-to-halo mass ratio ( fd) is adopted following the prescrip-
tion by Gnedin et al. (2007) to finally express λ as
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For a detailed description of the model, we refer the reader
to CS+13. The top panel of Figure 4 clearly shows an
anticorrelation between m ( )B0 and λ, confirming our hypothesis
that LSBs form in high spinning systems. In this sense, the
increase of fbar with increasing m ( )B0 is a natural outcome, given
the previous result by CS+13. In the same figure, we include
iso-contours that denote regions of constant fbar obtained by
dividing the parameter space into 10×10 bins, applying a
spline kernel to get a smooth transition, and requiring at least
five galaxies per bin to estimate the bar fraction. A clear trend of
increasing fbar with decreasing λ is noticeable with no
dependence on m ( )B0 at fixed λ. From this figure, it is apparent
that the dependence of fbar on m ( )B0 comes from the marked
correlation between m ( )B0 and λ. For completeness, we show in
the bottom panel of Figure 4 the bar fraction as a function of λ,
recovering the same behavior reported by CS+13 (see their
Figure 1(b)), with a decrease of the bar fraction with increasing
λ. This result is encouraging, given that in the sample used in the
present work the bar identification is made by amateur citizen
scientists, while in the sample employed by CS+13, the

Figure 1. Combined + +g r i color images of examples of LSBs (left panels) and HSBs (right panels) classified as barred (upper panels) and unbarred (lower
panels). Galaxies m ( )B0 values are shown for each case.

Figure 2. Bar fraction as a function of redshift for LSBs and HSBs in our
sample.
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classification is preformed by professional astronomers (Lee
et al. 2012).

As several studies have previously pointed out (Masters
et al. 2012; Oh et al. 2012; Skibba et al. 2012; Cervantes Sodi
et al. 2013; Gavazzi et al. 2015), the bar fraction is a strong
function of stellar mass, with increasing fbar as *M increases.
Likewise, LSBs tend to be less massive than their HSBs
counterparts (Galaz et al. 2011), which could explain why fbar
is lower for LSBs. In Figure 5(a), we explore the co-
dependence of the bar fraction on m ( )B0 and *M . The first
thing to notice on the figure is a general increase of m ( )B0 with
increasing *M . Second, for galaxies with * >M 1010.75, the iso-
contours denoting constant fbar show a strong dependence on
stellar mass, while almost no dependence on m ( )B0 . For less
massive galaxies, a co-dependence with m ( )B0 appears, with
fbar decreasing with increasing central surface brightness. This
kind of bimodality has already being detected. For instance,

Nair & Abraham (2010) showed that the bar fraction presents a
minimum at * ~M 1010.2, a bimodality which is also seen in the
stellar population.
The fraction of barred galaxies is also sensitive to color, fbar

being highest for red galaxies (Nair & Abraham 2010; Masters
et al. 2011; Lee et al. 2012; Oh et al. 2012). Figure 5(b) shows
that fbar depends exclusively on u−r and is independent of
m ( )B0 for red galaxies with - >u r 2, but for blue galaxies,
the dependence of fbar on m ( )B0 is noticeable, stressing the
presence of the aforementioned bimodality.
Using samples of galaxies from the SDSS with H I gas mass

estimates from ALFALFA (Giovanelli et al. 2005), Masters et al.
(2012) and Cervantes Sodi (2017) showed the inhibiting effect
gas has in the formation of bars. Using the H I mass estimate
from Teimoorinia et al. (2017), we explore in Figure 5(c) the
co-dependence of fbar on m ( )B0 and *M MH I , finding that, for

Figure 3. Bar fraction as a function of m ( )B0 (top panel) and m ( )r0 (bottom
panel) for strong bars. The vertical line in the top panel denotes the value that
segregates LSBs to the left and HSBs to the right.

Figure 4. Top panel: bar fraction fbar iso-contours in the m ( )B0 vs. λ plane.
Contours denote regions of constant fbar in the range < <f0.15 0.35bar . Gray
dots represent unbarred galaxies, and black dots represent barred ones. Bottom
panel: bar fraction as a function of the λ spin parameter.
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classification is preformed by professional astronomers (Lee
et al. 2012).

As several studies have previously pointed out (Masters
et al. 2012; Oh et al. 2012; Skibba et al. 2012; Cervantes Sodi
et al. 2013; Gavazzi et al. 2015), the bar fraction is a strong
function of stellar mass, with increasing fbar as *M increases.
Likewise, LSBs tend to be less massive than their HSBs
counterparts (Galaz et al. 2011), which could explain why fbar
is lower for LSBs. In Figure 5(a), we explore the co-
dependence of the bar fraction on m ( )B0 and *M . The first
thing to notice on the figure is a general increase of m ( )B0 with
increasing *M . Second, for galaxies with * >M 1010.75, the iso-
contours denoting constant fbar show a strong dependence on
stellar mass, while almost no dependence on m ( )B0 . For less
massive galaxies, a co-dependence with m ( )B0 appears, with
fbar decreasing with increasing central surface brightness. This
kind of bimodality has already being detected. For instance,

Nair & Abraham (2010) showed that the bar fraction presents a
minimum at * ~M 1010.2, a bimodality which is also seen in the
stellar population.
The fraction of barred galaxies is also sensitive to color, fbar

being highest for red galaxies (Nair & Abraham 2010; Masters
et al. 2011; Lee et al. 2012; Oh et al. 2012). Figure 5(b) shows
that fbar depends exclusively on u−r and is independent of
m ( )B0 for red galaxies with - >u r 2, but for blue galaxies,
the dependence of fbar on m ( )B0 is noticeable, stressing the
presence of the aforementioned bimodality.
Using samples of galaxies from the SDSS with H I gas mass

estimates from ALFALFA (Giovanelli et al. 2005), Masters et al.
(2012) and Cervantes Sodi (2017) showed the inhibiting effect
gas has in the formation of bars. Using the H I mass estimate
from Teimoorinia et al. (2017), we explore in Figure 5(c) the
co-dependence of fbar on m ( )B0 and *M MH I , finding that, for

Figure 3. Bar fraction as a function of m ( )B0 (top panel) and m ( )r0 (bottom
panel) for strong bars. The vertical line in the top panel denotes the value that
segregates LSBs to the left and HSBs to the right.

Figure 4. Top panel: bar fraction fbar iso-contours in the m ( )B0 vs. λ plane.
Contours denote regions of constant fbar in the range < <f0.15 0.35bar . Gray
dots represent unbarred galaxies, and black dots represent barred ones. Bottom
panel: bar fraction as a function of the λ spin parameter.
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Corroboration 
from theoretical 
studies.

Long, Shlosman
& Heller 2014

The Astrophysical Journal Letters, 783:L18 (5pp), 2014 March 1 Long, Shlosman, & Heller

Figure 1. Upper: evolution of the bar amplitudes, A2 (normalized by the
monopole term A0), for spherical NFW halos with q = 1. Shown are P00,
P45, P60, and P90 models. Lower: evolution of bar pattern speed, Ωb, in the
above models.
(A color version of this figure is available in the online journal.)

these models differs substantially as well. The A90 bar displays
a perfectly flat Ωb(t), and does not lose its angular momen-
tum to the disk and/or the halo. This includes both the internal
angular momentum (i.e., circulation) and the tumbling. A sim-
ilar trend between the final Ωb and λ can also be observed in
Figure 7 of Debattista & Sellwood (2000), although low resolu-
tion apparently prevented any conclusion of this sort.

Figure 2 compares the end products of the secular evolution
of barred disks in models P00, P45, and P90. The differences
appear to be profound. First, the bar size clearly anticorrelates
with λ—this is a reflection of the inability of the bar potential to
capture additional orbits and grow in length and mass. Second,
the ansae (handles) feature is the strongest in the P00 bar, while
it is smaller in size for P45 and completely absent in the P90 bar.
Ansae have been associated with captured disk orbits librating
around the bar (Martinez-Valpuesta 2006; Martinez-Valpuesta
et al. 2006). This is another indication that the bar in high-
λ models does not grow. Note that the surface density in
the disk is clearly affected, as trapping of the disk orbits by
the P00 bar creates low-density regions in the disk but not
in P90. We analyzed the properties of the halo “ghost” bar
(Holley-Bockelmann et al. 2005; Athanassoula 2007; Shlosman
2008) and found no growth there as well. The offset angle
between the ghost and stellar bars remains near zero (within
the error margin). Third, the face-on morphology of the P00 bar
is that of a rectangular shape, while that of P90 is elliptical.
Fourth, bulges that formed as a result of the buckling instability
show the same anticorrelation trend in size—λ, as seen in edge-
on (i.e., along the bar’s minor axis) frames. Furthermore, they
differ in shape as well: the P00 bulge has an X-shape, P45 is
boxy/X-shaped, and P90 is boxy. Trapped three-dimensional
orbits are responsible for the bulge shape (e.g., Patsis et al.
2002; Athanassoula 2005; Martinez-Valpuesta et al. 2006).

What is even more intriguing is the near or complete absence
of secular braking in the P60 and P90 bars. Although the bars
are weak, constancy of Ωb and A2 over 6 Gyr in P90 points to no
angular momentum transfer away from the bar, or, alternatively,
to an opposite flux from the halo which compensates for the
loss of angular momentum by the bar. As we see below, it is
the second possibility that takes place. While the P60 and P90
models exhibit extremes of this effect, it is visible at various
levels in all models with λ ! 0.02.

While most of the angular momentum transfer away from
the bar is due to resonances, we deal with this aspect of the
problem elsewhere. However, we do quantify the rate of
the overall angular momentum transfer between the disk and the
halo, i.e., accounting for the resonant and non-resonant angular
momentum redistribution. This is accomplished by dividing the
disk and halo into nested cylindrical shells and constructing a
two-dimensional map of the angular momentum change in each
shell as a function of R and t (e.g., Villa-Vargas et al. 2009, 2010).
Such a color-coded diagram is shown in Figure 3 for disk stars
(lower frames), ⟨J̇∗⟩ ≡ (∂J∗/∂t)R, and for halo particles (upper
frames), ⟨J̇DM⟩ ≡ (∂JDM/∂t)R, where the brackets indicate
time-averaging.

The diagrams for P00 are the easiest to understand. The
red (blue) colors correspond to the absorption (emission) of
the angular momentum. The continuity of these colors for the
P00 disk represents the emission and absorption of angular
momentum by the disk prime resonances. For example, the
dominant blue band drifting to larger R with time is associated
with the emission of angular momentum by the inner Lindblad
resonance (ILR) and the additional blue band corresponds to
the ultraharmonic resonance. The dominant red band follows
the corotation resonance (CR) and the outer Lindblad resonance
(OLR).

The number of DM particles on prograde orbits has steadily
increased with λ, raising the possibility of resonant coupling
between them and the bar orbits. This is supported by linear
theory (Weinberg 1985 and references therein) and by numerical
simulations (Saha & Naab 2013). Indeed, we observe increased
emission of angular momentum by the ILR and corresponding
enhanced absorption by the halo. Halo particles are late to pick
up the angular momentum from the bar (due to their higher
velocity dispersion), but the exchange is visible already before
buckling. Enhanced coupling between the orbits is the reason
for the shorter timescale for bar instability.

The secular evolution of bars, however, proceeds under quite
different conditions. The bar cannot be considered as a linear
perturbation, and the halo orbits have already been heavily
perturbed and some have been captured by the stellar bar. So,
one expects the nearby halo orbits around the bar to be tightly
correlated with the bar. The upper frames in Figure 3 display
the rate of angular momentum flow in the DM halo. While the
P00 halo appears to be completely dominated by the absorption
of angular momentum at all major resonances (ILR, CR, OLR),
P30 shows a quite different behavior and emits it at the ILR.
The loss of angular momentum in this region of the DM halo
is even more intense in P90. Already, at the buckling we can
observe a weak blue band of emission in the P30 halo, alongside
a strong absorption, instead of pure absorption in P00. Note that
linear resonances shown by continuous curves appear to be a
bad approximation to the actual nonlinear resonances given by
the color bands because they are calculated under assumption
of circular orbits. In the P90 halo, a strong emission is visible
at the position of the disk ILR, which continues as a band
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ABSTRACT

We demonstrate using numerical simulations of isolated galaxies that growth of stellar bars in spinning dark matter
halos is heavily suppressed in the secular phase of evolution. In a representative set of models, we show that
for values of the cosmological spin parameter λ ! 0.03, bar growth (in strength and size) becomes increasingly
quenched. Furthermore, the slowdown of the bar pattern speed weakens considerably with increasing λ until it
ceases completely. The terminal structure of the bars is affected as well, including extent and shape of their boxy/
peanut bulges. The essence of this effect lies in the modified angular momentum exchange between the disk and
the halo facilitated by the bar. For the first time we have demonstrated that a dark matter halo can emit and not
purely absorb angular momentum. Although the halo as a whole is not found to emit, the net transfer of angular
momentum from the disk to the halo is significantly reduced or completely eliminated. The paradigm shift implies
that the accepted view that disks serve as sources of angular momentum and halos serve as sinks must be revised.
Halos with λ ! 0.03 are expected to form a substantial fraction, based on the lognormal distribution of λ. The
dependence of secular bar evolution on halo spin, therefore, implies profound corollaries for the cosmological
evolution of galactic disks.
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1. INTRODUCTION

Redistribution of angular momentum in astrophysical sys-
tems is a major driver of their dynamical and secular evolution.
Galactic bars facilitate this process by means of gravitational
torques, triggered internally (spontaneously) or externally (in-
teractively). Important aspects of stellar bar evolution are still
being debated—their origin and evolutionary changes in mor-
phology, growth, and decay, are not entirely clear. Theoretical
studies of angular momentum redistribution in disk–halo sys-
tems have been limited almost exclusively to nonrotating halos,
following pioneering works on linear perturbation theory by
Lynden-Bell (1962), Lynden-Bell & Kalnajs (1972), Tremaine
& Weinberg (1984), and Weinberg (1985), which underscored
the dominant role of orbital resonances. Numerical simulations
have confirmed the angular momentum flow away from disks
embedded in axisymmetric (e.g., Sellwood 1980; Debattista &
Sellwood 1998, 2000; Tremaine & Ostriker 1999; Villa-Vargas
et al. 2009, 2010; review by Shlosman 2013) and triaxial (e.g.,
El-Zant & Shlosman 2002; El-Zant et al. 2003; Berentzen et al.
2006; Berentzen & Shlosman 2006; Heller et al. 2007; Machado
& Athanassoula 2010; Athanassoula et al. 2013) halos. Reso-
nances have been confirmed to account for the lion’s share of
angular momentum transfer (e.g., Athanassoula 2002, 2003;
Martinez-Valpuesta et al. 2006; Weinberg & Katz 2007), In this
paradigm, the halo serves as the pure sink and the disk as the
net source of angular momentum.

However, realistic cosmological halos are expected to possess
a net angular momentum, acquired during the maximum expan-
sion epoch (e.g., Hoyle 1949; White 1978) and possibly during
the subsequent evolution (Barnes & Efstathiou 1987; but see
Porciani et al. 2002). Simulations have quantified the distribu-
tion of spin values, λ ≡ Jh/

√
2MvirRvirvc, for cosmological dark

matter (DM) halos to follow a lognormal distribution, where Jh

is the angular momentum, Mvir and Rvir the halo virial mass and
radius, and vc the circular velocity at Rvir, with the mean value
λ = 0.035 ± 0.005 (e.g., Bullock et al. 2001). Spinning halos
can increase the rate of the angular momentum absorption—an
issue brought up by Weinberg (1985) but never fully addressed
since. Only recently has it been confirmed numerically that the
bar instability timescale is indeed shortened for λ > 0 (Saha &
Naab 2013). But these models had been terminated immediately
after the bar instability had reached its peak, and hence avoided
completely the secular stage of bar evolution.

The λ = 0 halos consist of two populations of DM particles,
prograde and retrograde (with respect to disk spin). The amount
of angular momentum in each of these populations can vary
from zero for nearly radial orbits, to a maximal one for nearly
circular orbits. (Both extremes are mentioned for pedagogical
reasons only.) These extremes in angular momentum correspond
to extremes in velocity anisotropy. Various degrees of velocity
anisotropy in the halo lie in between and represent a rich
variety of dynamical models. Stellar bars mediate the angular
momentum transfer in such disk–halo systems with a broad
range of efficiencies. The current paradigm of stellar bar
evolution assumes an idealized version of a nonrotating DM
halo which cannot account for the whole bounty of associated
processes. We address these issues in a subsequent paper (in
preparation)

In this Letter we demonstrate for the first time that secular
growth of galactic bars in spinning DM halos is damped more
strongly with increasing λ, and this effect is the result of a
modified angular momentum transfer. Section 2 describes our
numerical methods. Results are given in Section 3.

2. NUMERICS AND INITIAL CONDITIONS

We use the N-body part of the tree-particle-mesh smoothed
particle hydrodynamics code GADGET-3 originally described
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galaxies fainter than m =( )B 21.00 mag arcsec−2, at fixed

*M MH I , there is almost no dependence on m ( )B0 . This figure
indicates that the dependence of fbar on the surface brightness of
the galaxies is mostly driven by the correlation present between
surface brightness and gas richness. In this sense, given that
LSBs are intrinsically gas-rich galaxies (Minchin et al. 2004;
Pustilnik et al. 2011; Du et al. 2015), the low fraction of barred
LSBs is at least partially driven by the inhibiting effect the gas
has in the formation of bars (Masters et al. 2012; Cervantes
Sodi 2017), which is more evident in LSBs than in HSBs given
that they present a wider range of *M MH I values. Figure 5(c)
also shows that for galaxies brighter than m =( )B 21.00
mag arcsec−2, surface brightness may play a role in the
likelihood of galaxies hosting bars, even for gas-rich systems.

Finally, Figure 5(d) shows a clear correlation between the λ
spin parameter and the gas mass fraction, as previously
reported by Cervantes Sodi & Hernández (2009) and Huang
et al. (2012). From the contours that are almost entirely
perpendicular to the distribution of points in the plane, we can
conclude that the dependence of fbar on λ is as strong as the
dependence of fbar on the gas fraction. Considering that at fixed
λ (Figure 4(a)) and *M MH I (Figure 5(c)), the bar fraction is
independent of m ( )B0 , we conclude that the dependence of fbar
on m ( )B0 is driven by these other two co-dependences.
Given that we also count with bar length measurements from

Hoyle et al. (2011), we explored the dependence of the bar
length (Lbar), normalized to the optical size of the galaxy
defined as two times the r-band Petrosian radius 90 (2rp,90), on

Figure 5. Bar fraction fbar iso-contours in the m ( )B0 vs. *M (a), m ( )B0 vs. u−r (b), m ( )B0 vs. *M MH I (c), and λ vs. MH I/M* (d) planes. Contours denote regions of
constant fbar in the range < <f0.15 0.40bar . Gray dots represent unbarred galaxies, and black dots represent barred ones.
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Bar fraction vs. HI gas abundance
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Figure 4. The strong bar fraction as a function of (a) gas fraction, (b) optical (g − r) colour and (c) stellar mass for 2090 Galaxy Zoo galaxies detected in
H I by α40. Strong bars are identified from GZ2 classifications using pbar > 0.5 (as discussed in Section 2.2). This figure shows that the strong bar fraction
increases as atomic gas content decreases and as optical colour and stellar mass increase. The errors shown are Poisson counting errors on the fractions – these
are underestimates for the fractions close to zero (i.e. very gas rich, and blue galaxies; see Cameron 2011). The horizontal lines show the strong bar fraction
for all H I detected galaxies of 22 ± 1 per cent. Galaxies undetected in H I in the sample have a strong bar fraction of 32 ± 1 per cent.

This suggest that either (1) H I-rich galaxies are less likely to host
strong bars, or (2) strongly barred galaxies have lower atomic gas
fractions than unbarred/weakly barred galaxies. The median gas
fraction among barred galaxies in our sample is fH I = 0.39 (with an
interquartile range, or IQR, of 0.19–1.1, or expressed in log space,
log fH I = −0.40+0.43

−0.33), compared to a median value of fH I = 0.74
(IQR 0.35–1.5, or log fH I = −0.13+0.30

−0.32) in unbarred galaxies.
While H I poor galaxies are preferentially detected in the near part

of our sample (Section 2.3), the observed trend cannot be explained
by resolution effects. The SDSS images used to identify bars have a
median physical resolution of 1.3 kpc at z = 0.05 which is sufficient
to detect all galactic scale bars across the whole redshift range.

We also confirm with this sample (middle and right-hand panel of
Fig. 4) the previously observed trends of higher bar fraction in disc
galaxies with higher stellar masses and redder optical colours (e.g.
Nair & Abraham 2010b; Masters et al. 2011; Skibba et al. 2012).
We note that as a set of galaxies selected to have been detected in
H I this sample is biased towards lower mass, ‘blue cloud’ late-type
(small bulge) spirals than previous Galaxy Zoo studies of the bar
fraction (Masters et al. 2011; Skibba et al. 2012), which also use a
more luminous volume limit to z = 0.06.

While the trends for more strong bars to be found in massive,
optically red and gas-poor disc galaxies is the most obvious feature
of the plots in Fig. 4, it can also be seen that a small peak in strong bar
fraction is seen in lower mass (log (M⋆/M⊙) < 10.0), bluer and more
gas-rich galaxies. That the trends of bar fraction are not monotonic
across the Hubble sequence and seems to have a minimum at around
log (M⋆/M⊙) = 10.0 has been noted previously (e.g. in the Third
Reference Catalogue of Bright Galaxies, RC3; Odewahn 1996, and
more recently, Nair & Abraham 2010b; Masters et al. 2011), and
most likely indicates a difference in evolution for bars in different
mass galaxies.

Example images of high and low stellar and H I mass galaxies
with and without bars are shown in Fig. 5.6

6 More example images can be see at http://www.icg.port.ac.uk/
~mastersk/GZ_ALFALFAImages.

3.2 Breaking degeneracies with gas content, stellar mass
and colour

It is well known (e.g. most recently seen in ALFALFA data by
Catinella et al. 2010; Toribio et al. 2011a,b; Fabello et al. 2011;
Huang et al. 2012) that the atomic gas content of galaxies correlates
with both stellar mass and optical colour, which are of course also
correlated via the colour–magnitude relation. We illustrate these
correlations in Fig. 6 showing the locations of H I detected galaxies
in our sample as a function of stellar mass, gas fraction and (g − r)
colour. The best fit to the trends is shown as solid lines.

Given these correlations and the fact that the strong bar fraction
increases towards higher stellar mass, redder disc galaxies (Nair &
Abraham 2010b; Masters et al. 2011; Skibba et al. 2012) we must
ask if all, or part, of the correlation between gas fraction and bar
fraction can be explained by the combination of the correlations
between gas fraction and stellar mass and those between stellar
mass/colour and bar fraction.

The bar fraction is indicated in Fig. 6 by the grey-scale contours
which show strong bar fractions of between 10 and 40 per cent.
From this we observed that the bar fraction peaks most strongly
among the higher stellar mass disc galaxies which are both redder
and less gas rich than is typical for their stellar mass. This already
demonstrates that the correlations between gas fraction and stellar
mass/colour cannot explain the full increase of bar fraction with
decreasing gas fraction.

3.2.1 Bar fraction with gas deficiency

In this section we will use the relationship between stellar mass and
gas fraction observed in Fig. 6 to calculate the expected gas fraction
for a galaxy of a given stellar mass. We find a trend of

⟨log (MH I/M⋆)⟩ = −0.31 − 0.86(log (M⋆/M⊙) − 10.2), (4)

with a typical scatter of σlog(MH I/M⋆) = 0.27 dex. Clearly the selec-
tion function plays a role in shaping the trends, and will reduce
the observed scatter by preferentially removing gas-poor galaxies
at a given stellar mass. However, we point out that the deeper H I

observations of the GALEX–Arecibo SDSS Survey (GASS) which
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Figure 6. Gas density in the central region of two simulations. The left
panel shows simulation 109 at time 2.7 Gyr, the middle one the same simu-
lation at time 5.07 Gyr and the right panel simulation 115 at time 9.04 Gyr.
Colour is according to the projected density as given by the colour bar on
the left of the panels. The snapshots are rotated so that the bar is horizontal
and the size of the boxes is 8 × 8 kpc. The green lines on all three panels
show the isophotes for the combined DISK and STARS components.

tio vary considerably with time. Eye estimates give a representative
outline of 0.75 by 0.6 kpc, but at late times it can be considerably
smaller, while at early times it can be as large as 1.8 by 0.8 kpc. It
is particularly clear in simulations with initially 20%, or 50% gas
where it is clearly seen to form first, before the outer component.
In the initially 20% cases this component has a rather interesting
morphological evolution. It is already present at t = 2.5 ± 0.5 Gyr,
where it can be seen as a rather extended component. Its central
density is considerably lower than that of its outer part and it can
therefore be considered as an elongated inner ring. As it evolves,
it becomes smaller and rounder and has almost acquired its final
shape and extent by t = 5 ± 1 Gyr. Over some part of the sim-
ulation this could therefore be considered as either an inner ring,
or an inner gaseous bar, as has been found in previous simulations
(Heller, Shlosman & Englmaier 2001).

The gaseous CMC has also a second, considerably more ex-
tended component (yellow in Fig. 6). This has lower density and
is oriented roughly perpendicular to the bar. Its outline is less well
defined than that of the (white) inner component and is more irreg-
ular. Its typical size is between 1 and 3 kpc, but in some cases can
be even larger. It is not very elongated, with, in many cases, an axial
ratio of the order of 2:3. It forms considerably later than the white
inner component. In general, it forms earlier for runs with initially
strongly triaxial haloes (halo 3) and later in simulations with an ini-
tially more spherical halo. There is also a general trend between the
initial gas fraction and the time at which this component forms, in
the sense that it forms earlier in more gas rich cases. In fact it has
not formed by the end of the simulation (t = 10 Gyr) for runs 106
and 109 which have initially only 20% gas and spherical or mildly
triaxial haloes, respectively, and it forms only after 9 Gyr for runs
111 and 114 which have initially 50% gas and the same haloes.

4 BAR STRENGTH EVOLUTION

The time evolution of the bar strength is shown for all runs in the
upper panels of Fig. 7. It was obtained as described in Sect. 2.3
and then smoothed with a Savitzky-Golay filter (Press et al. 1992).
We wilfully chose filter values that smooth out not only the noise,
but also some relatively high frequency oscillations which we will
discuss in detail in Sect. 7, so as to view only the global evolution.
The evolution for the various simulations is displayed here so as to
show best the effect of the initial gas fraction. Fig. 8 displays the
same data as Fig. 7, but now so as to reveal best the effect of halo
initial triaxiality. Moreover, in Fig. 8 we used much less smoothing,
smoothing out only what we verified by eye is indeed noise. From
these two figures it becomes clear that the effect of the initial gas
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Figure 7. Time evolution of three quantities. From top to bottom the rows
of plots give the bar strength (A2), the halo axial ratio in the equatorial
plane (b/a) and the halo flattening (c/a). The three columns correspond to
the three different halo models. In the online version, the different initial
gas fractions are shown with lines of different colour, namely black for 0%,
red for 20%, blue for 50%, green for 75% and magenta for 100% gas, as
explained in the panel of the first column and third row. In this display one
can easily see the effect of the initial gas fraction on the results.

fraction is very crucial, even more so that the effect of the initial
halo triaxiality. Note also that their effect prevails at different times.
More specifically we can say the following:

The time at which the bar starts forming depends considerably
on the halo triaxiality (Fig. 8) and must be presumably due to the
triggering by the halo non-axisymmetry. This effect of triaxiality
can be clearly seen in all cases, except those with a strong initial
gas fraction where initial disc instabilities in the inner disc parts
and the formation of an inner bar do not allow us to distinguish
when the main bar starts growing.

All models with initially no gas and the model with 20% gas
and a spherical halo (run 106) have the same four evolutionary
phases, independent of their halo shape: a fast growth phase, fol-
lowed by a plateau-like part and then a sharp decrease (see also
MA10). The fourth and final phase is that of a slow secular evolu-
tion. The maximum values after the growth phase are roughly the
same in all gas-less runs and so is the amount of decrease after the
plateau, while the times at which these features occur changes little
between runs.

The remaining models have fewer evolutionary phases and in
many cases it is difficult to distinguish between them. The two sim-
ulations with initially 20% gas and a triaxial halo have a similar
time evolution of the bar strength, which resembles the one de-
scribed above, but lacks the plateau right after the phase of the bar
growth, while the drop is not as clear-cut. We can thus say that
there are three evolutionary phases, first a bar growth to a maxi-
mum value, followed by a short decrease phase and finally a slow
secular evolution phase.

For all simulations with a strong initial gas fraction (50% or
higher) them = 2 strength curves are simpler, and have fewer evo-
lutionary phases. In particular for the cases with initially 50% gas
and a spherical, or mildly triaxial halo there is first a time inter-
val during which axisymmetry prevails, followed by a time of bar
growth. Both these time intervals are much longer than in the gas-
less or gas-poor cases described above, so that we can describe this
growth as secular growth. This is followed, as in the previously
described runs, by a secular evolution phase.
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Conclusions

• At fixed stellar mass, the bar fraction decreases with increasing halo 
mass. This result is reproduced using three different halo mass 
estimates.

• Our study suggests that massive dark matter halos help to stabilise 
galaxies against the formation and/or growth of bars. This is enhanced 
in the case of high spinning systems. 

• In a similar way, we conclude that the strong anti-correlation between 
the likelihood of a galaxy hosting a bar with the gas richness of the 
galaxy results form the inhibiting effect the gas has in the formation of 
bars.

• These results are reproduced by simulations that include 
hydrodynamics and halos with non-vanishing angular momentum 
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